Improving Rolling Plant Performance

Dr Tom Farley
Innoval Technology Ltd

Aluminum International Congress V
Sao Paulo 24-26 April 2012
Innoval Technology joins Danieli Aluminium Strip Division

Innoval Technology, a leading provider of independent technical expertise to the global downstream aluminium industry, joins forces with Danieli Fröhling and Danieli Wean United to form the Danieli Aluminium Strip Division. The Oxfordshire-based company brings unparalleled aluminium rolling expertise to the Danieli group of companies, which rank among the three largest suppliers of plant and equipment to the global metals industry.
A single source Supplier for the complete Aluminium strip production

provided by DANIELI
DANIELI

€ 3.2 Billion Turnover, ~9400 employees around the world (2011)

Total Focus on the Metals Industry
Outline of Presentation

- Innoval Technology

- Challenges Facing Aluminium Rolling Companies

- Improving Rolling Plant Performance
 - Expertise and Process Models
 - Developing and Training Staff
 - Designing new rolling operations for maximum returns
Outline of Presentation

- Innoval Technology

- Challenges Facing Aluminium Rolling Companies

- Improving Rolling Plant Performance
 - Expertise and Process Models
 - Developing and Training Staff
 - Designing new rolling operations for maximum returns
Innoval Technology – Our Background

- Innoval Technology provides a unique resource of independent expertise to the downstream aluminium industry
 - formed in 2003 as a result of closure of one of Alcan’s Global Technical Centres
 - in 2012 became part of Danieli Group

- We are a group of 26 aluminium experts – our strength is the breadth of our aluminium knowledge
 - rolling and extrusion process expertise
 - metallurgy product expertise
 - surfaces expertise

- Our engineers have an abundance of product and process experience
 - most have been supporting the industry for over 25 years
 - many have held Senior Management positions in global aluminium companies
Innoval Technology – Supporting Aluminium Businesses

- **Strategic Support**
 - technical Due Diligence on existing plants
 - pre-Feasibility Studies and Greenfield plant design
 - plant investment and upgrade support

- **Technical support**
 - process Improvement
 - product Development and Quality
 - energy Reduction

- **Training**

Everything we do is aimed at maximising returns for our clients
Outline of Presentation

- Innoval Technology

- Challenges Facing Aluminium Rolling Companies

- Improving Rolling Plant Performance
 - Expertise and Process Models
 - Developing and Training Staff
 - Designing new rolling operations for maximum returns
Challenges Facing Aluminium Rolling Companies

Aluminium Industry Changes

- increased use of aluminium in high-growth emerging regions
- cost reduction in low-growth regions
- acquisitions, mergers, divestments and closures – break up of the supply chain
- reducing R&D in low-growth regions

Challenges

- more exacting customer requirements and specifications
- increase utilisation of capital assets
- reduce operating costs (reduce energy consumption)
- competition from other materials
- increasing focus on sustainability
Outline of Presentation

- Innoval Technology

- Challenges Facing Aluminium Rolling Companies

- Improving Rolling Plant Performance
 - Expertise and Process Models
 - Developing and Training Staff
 - Designing new rolling operations for maximum returns
The use of Models to Improve Rolling Plant Performance

- To achieve world-class product quality and machine performance often requires the solution of difficult problems relating to …
 - metallurgy
 - surface
 - dimensions
 - residual stresses and strains
 - need to overcome machine productivity constraints

- To solve the most challenging rolling problems requires a deep technical understanding
 - need experienced industry experts (in-house or consultants)
 - *enhanced by the application of computer models for increased insight*
The use of Models to Improve Rolling Plant Performance

- Many of the processes are performed “out of sight”
 - where measurements of important process parameters are not possible

- Innoval develops and uses physics-based models as tools to improve rolling plant performance
 - to study a wider range of manufacturing parameters than is possible in normal production
 - to recreate a particular problem within the computer increases insight into the problem

- This approach can be used to supplement more traditional approaches to problem-solving such as 6-sigma

- Where appropriate models can also be implemented on-line
 - to maximise the value of the understanding contained within them
Improving Rolling Plant Performance using Ingot Heating Models

- Ingot pre-heating is an example of a rolling process stage where important parameters are hard to measure
 - in this case, the temperature deep inside the ingot

- It is important during pre-heating for all parts of the ingot to reach the target temperature for target time
 - but it is also important not to exceed the safe temperature in any part of the ingot

- A calibrated model can provide the “hidden” temperatures to allow faster and more efficient heating practices

- Ingot pre-heating is the most energy-intensive part of the aluminium rolling process
 - models can be used to devise heating schedules to minimise energy usage
 - also used to identify furnace issues
Example: Ingot Homogenisation and Preheating Models
Example: Ingot Homogenisation and Preheating Models

![Graph showing temperature and energy over time for ingot homogenisation and preheating models.](image)

- **Temperature [°C]**: Set Air Temperature, Ingot Lead Temperature, Ingot Lag Temperature.

Time [hrs]: 0, 5, 10, 15, 20.

Temperature [°C]: 0, 5, 10, 15, 20.

Energy [GJ]: 0, 5, 10, 15, 20.
Improving Rolling Plant Performance using Roll Gap Models

- A lot happens in the roll gap
 - thickness changes leading to dimensional quality
 - surface changes leading to surface quality
 - temperature changes leading to metallurgical quality

- A good understanding of roll gap physics is important
 - to optimise rolling mill schedules
 - to maximise returns from existing and new rolling mills

- A model of the roll gap provides invaluable information
 - rolling loads, torques and motor currents for different alloys
 - resulting strip and roll temperatures, flatness and profile.
Cold Mill Roll Gap - approximate Scale

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>1.0mm</td>
</tr>
<tr>
<td>Exit</td>
<td>0.5mm</td>
</tr>
<tr>
<td>Alloy</td>
<td>5182</td>
</tr>
<tr>
<td>Arc of contact</td>
<td>13 mm</td>
</tr>
<tr>
<td>Roll radius</td>
<td>250mm</td>
</tr>
<tr>
<td>Flattened roll radius</td>
<td>340mm</td>
</tr>
</tbody>
</table>

Volume of aluminium in roll gap ~10cm³ per m width
Example: Roll Gap Models
Example: Roll Gap Models

(a) 5 pass schedule

<table>
<thead>
<tr>
<th>Reduction</th>
<th>Load (kN)</th>
<th>Amps including Losses</th>
<th>Forward Slip (%)</th>
<th>Net Torque (mm)</th>
<th>Qce (mm)</th>
<th>Qce (kW)</th>
<th>Power per Roll (kW)</th>
<th>Power including Mechanical Losses (kW)</th>
<th>Power To Motors (kW)</th>
<th>Efficiency (%)</th>
<th>Starting Pressure (bar)</th>
<th>Ending Pressure (bar)</th>
<th>Heat by Def (kW/m)</th>
<th>Total Heat (kW/m)</th>
<th>Stored Energy (kW/h)</th>
<th>Contact Time (s)</th>
<th>Entry Contact Angle (°)</th>
<th>Unwind Power (kW)</th>
<th>Rewind Power (kW)</th>
<th>Refusal Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8,991.3</td>
<td>9,483.0</td>
<td>0.18</td>
<td>0.008</td>
<td>3,840.4</td>
<td>7,638.3</td>
<td>6,636.1</td>
<td>118.5</td>
<td>700</td>
<td>23.9</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
<tr>
<td>2</td>
<td>7,134.0</td>
<td>7,112.0</td>
<td>1.89</td>
<td>0.027</td>
<td>3,109.0</td>
<td>4,407.8</td>
<td>3,876.8</td>
<td>80.8</td>
<td>700</td>
<td>20.1</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
<tr>
<td>3</td>
<td>7,033.2</td>
<td>4,023.1</td>
<td>3.31</td>
<td>0.023</td>
<td>1,425.9</td>
<td>3,037.3</td>
<td>3,376.2</td>
<td>90.0</td>
<td>700</td>
<td>23.7</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
<tr>
<td>4</td>
<td>6,155.8</td>
<td>3,003.6</td>
<td>3.72</td>
<td>0.020</td>
<td>1,412.2</td>
<td>3,027.3</td>
<td>3,215.8</td>
<td>80.8</td>
<td>700</td>
<td>20.1</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
</tbody>
</table>

(b) 4 pass schedule

<table>
<thead>
<tr>
<th>Reduction</th>
<th>Load (kN)</th>
<th>Amps including Losses</th>
<th>Forward Slip (%)</th>
<th>Net Torque (mm)</th>
<th>Qce (mm)</th>
<th>Qce (kW)</th>
<th>Power per Roll (kW)</th>
<th>Power including Mechanical Losses (kW)</th>
<th>Power To Motors (kW)</th>
<th>Efficiency (%)</th>
<th>Starting Pressure (bar)</th>
<th>Ending Pressure (bar)</th>
<th>Heat by Def (kW/m)</th>
<th>Total Heat (kW/m)</th>
<th>Stored Energy (kW/h)</th>
<th>Contact Time (s)</th>
<th>Entry Contact Angle (°)</th>
<th>Unwind Power (kW)</th>
<th>Rewind Power (kW)</th>
<th>Refusal Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8,988.4</td>
<td>9,054.0</td>
<td>0.06</td>
<td>0.072</td>
<td>3,998.2</td>
<td>8,781.8</td>
<td>6,337.8</td>
<td>123.3</td>
<td>700</td>
<td>23.6</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
<tr>
<td>2</td>
<td>8,047.7</td>
<td>8,014.0</td>
<td>0.06</td>
<td>0.072</td>
<td>3,998.2</td>
<td>8,781.8</td>
<td>6,337.8</td>
<td>123.3</td>
<td>700</td>
<td>23.6</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
<tr>
<td>3</td>
<td>7,134.0</td>
<td>7,112.0</td>
<td>1.89</td>
<td>0.027</td>
<td>3,109.0</td>
<td>4,407.8</td>
<td>3,876.8</td>
<td>80.8</td>
<td>700</td>
<td>20.1</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
<tr>
<td>4</td>
<td>6,155.8</td>
<td>3,003.6</td>
<td>3.72</td>
<td>0.020</td>
<td>1,412.2</td>
<td>3,027.3</td>
<td>3,215.8</td>
<td>80.8</td>
<td>700</td>
<td>20.1</td>
<td>100</td>
<td>124</td>
<td>391.5</td>
<td>374.7</td>
<td>1,758</td>
<td>2,141.0</td>
<td>273.5</td>
<td>173</td>
<td>4.5</td>
<td>396.7</td>
</tr>
</tbody>
</table>
The Importance of Cooling the Rolling Process

- There is a continual drive to improve the quality of rolled products
 - dimensional properties such as thickness, profile or flatness
 - surface quality

- Heat flows from the aluminium into the rolls
 - up to 500 kW per m width (hot rolling)

- The coolant used in a modern mill performs multiple functions (simultaneously):
 - remove heat from the rolls to control bulk roll temperature
 - lubricate the rolling process
 - wash away debris which might otherwise give surface quality problems
 - control local thermal expansion as profile and flatness control actuator
Improving Rolling Plant Performance using Roll Cooling Models

- A mill spray roll cooling configuration must remove sufficient heat from the rolling process to maintain appropriate target work roll temperatures
 - need correct roll coating for good aluminium surface control on hot mills
 - need sufficient temperature differential between the work roll and the applied coolant in cold rolling for control
 - need to avoid steep thermal gradients at the strip edge

- For good profile and flatness control the distribution of coolant across the roll width must be carefully designed

- Innoval’s experience shows that most roll cooling systems can be improved from the original supplier’s design
 - the Danieli Diamond Mill cooling systems are designed correctly from the start
Example: Roll Cooling Model

- Calculation of spray footprints, heat transfer coefficients, cooling effect and roll temperatures
Example: Roll Cooling Model

- Spray impact regions around the total surface area of one roll

Poorly designed cooling system

Optimised cooling system
Improving Plant Performance using Coil Heating/Cooling Models

- **Coil Annealing**
 - A greater understanding of the temperature-time history inside coils can lead to reduced annealing times and reduce energy consumption without compromise to quality
 - Increased productivity and annealing capacity

- **Forced Coil Cooling to reduce Work in Progress (WIP)**
 - Coil cooling models can be used to design forced media cooling systems for fast cooling of coils between rolling passes
 - Reduced WIP
Improving Rolling Plant Performance - Finishing Process Models

- The stresses and strains developed in aluminium sheet during finishing operations can be calculated to provide insight into each process
 - understanding leads to improved quality, recovery and productivity

- Coiling Models

- Levelling Models

- Slitting Models
Outline of Presentation

- Innova Technology

- Challenges Facing Aluminium Rolling Companies

- Improving Rolling Plant Performance
 - Expertise and Process Models
 - Developing and Training Staff
 - Designing new rolling operations for maximum returns
Development and Training Employees

- Need to retain experienced staff

- Need to develop a source of University graduates
 - correct disciplines
 - need further development and training

- Set up and foster University-based “Centres of Excellence”
 - specialised aluminium focus
 - sponsor students, projects and departments

- In-house R&D Centre
 - develop specific skills within R&D projects
 - transfer R&D people to plants in operational roles

- Ongoing training of all staff
 - use specialist technical companies for regular training and mentoring
Training Example: Aluminium Rolling Technology Course

ALUMINIUM ROLLING TECHNOLOGY COURSE - Innoval Technology, Banbury 14-18th May 2012

<table>
<thead>
<tr>
<th>MONDAY 14</th>
<th>TUESDAY 15</th>
<th>WEDNESDAY 15</th>
<th>THURSDAY 17</th>
<th>FRIDAY 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro & Smith</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:15 Outline of the Sheet Rolling Process</td>
<td>09:30 Thermal Aspects of Rolling</td>
<td></td>
<td>Control Systems with Workshops</td>
<td>Flatness Control</td>
</tr>
<tr>
<td>09:30 The Business of Rolling Tom Fairly</td>
<td>10:00 Chris Davenport</td>
<td></td>
<td>Dan Miller</td>
<td>Dan Miller</td>
</tr>
<tr>
<td>10:15 COFFEE</td>
<td>10:45 COFFEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 Mechanics of Rolling Chris Davenport</td>
<td>11:15 Thermal Aspects of Rolling Workshop Chris Davenport</td>
<td></td>
<td>Control Systems with Workshops</td>
<td>COFFEE</td>
</tr>
<tr>
<td>11:15</td>
<td>11:30 Dan Miller</td>
<td></td>
<td>Dan Miller</td>
<td>Flatness Control</td>
</tr>
<tr>
<td>12:45</td>
<td>13:00 Dan Miller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00 LUNCH</td>
<td>13:15 LUNCH</td>
<td></td>
<td>Tour of Innoval</td>
<td>LUNCH</td>
</tr>
<tr>
<td>13:15</td>
<td>13:30 Dan Miller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30 Machinery of Rolling Tom Fairly</td>
<td>14:15 Lubrication Mark Foster</td>
<td></td>
<td>Profile Measurement and Control</td>
<td></td>
</tr>
<tr>
<td>14:15</td>
<td>14:30 Kyle Smith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30 COFFEE</td>
<td>15:15 Process Metallurgy Geoff Stammers</td>
<td></td>
<td>Condition Monitoring Tom Farley</td>
<td>COFFEE</td>
</tr>
<tr>
<td>15:15</td>
<td>15:45 Tom Farley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45</td>
<td>16:00 Process Metallurgy Workshop Geoff Stammers</td>
<td></td>
<td>Profile Measurement and Control</td>
<td>COFFEE</td>
</tr>
<tr>
<td>16:00</td>
<td>16:30 Mark Foster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>16:45 Rolling Process Models Chris Davenport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:45</td>
<td>17:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:15 Introduction to Al Cars</td>
<td>17:30 Free</td>
<td></td>
<td>Social Event</td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>Social Event</td>
</tr>
</tbody>
</table>

Commercial-in-Confidence, © Innoval Technology Ltd
Outline of Presentation

- Innoval Technology

- Challenges Facing Aluminium Rolling Companies

- Improving Rolling Plant Performance
 - Expertise and Process Models
 - Developing and Training Staff
 - Designing new rolling operations for maximum returns
Designing New Rolling Operations for Maximum Returns

- World-class equipment does not on its own guarantee world class products
 - Need the correct technology options for the products to be made
 - Need support from product and process experts

- Many examples in aluminium rolling mill investments
 - ROI took longer than planned
 - difficulty achieving the quality requirements of world-class products

- Maximum returns require performance above the levels achieved during machine commissioning
 - the machine must be designed correctly for world-class performance
 - need technical expertise and know-how to maximise returns

- Danieli Diamond Mills are designed with Innoval expertise to succeed
Choosing the Right Technologies - Assess Product Challenges

- Products vary in their complexity and in their difficulty of manufacture

- The products determine what equipment is required in the plant
 - type of rolling or extrusion equipment
 - type of finishing operations

Example – Can Body Stock (CBS)

- A single can line manufactures 2,000 cans per minute (1 billion per year)
- Can line requires very high quality CBS
- CBS is technically demanding to produce
- Need a high Capex hot mill configuration to produce CBS
Choosing the Right Technologies - Capacity Calculations

- Correct sizing and multiples of equipment type
 - For example - what size of furnace and how many?

- Assessment of spare capacity within key assets
 - What other products could the plant make to fill any spare capacity?

- Awareness of the magnitude of process scrap at every stage (recoveries)
 - 1000 tonnes of cast slabs may only produce 700 tonnes of finished product
 - Product dependent

Example – Rolling Mill
- The capacity of a rolling mill depends on the design and the products being rolled
- A rolling mill represents a significant component of Capex so must be specified very carefully
Designing New Rolling Operations for Maximum Returns

- Market Analysis
 - products
 - volumes
- Capacity Models
- Equipment Specification
 - equipment
- Plant Design
 - capex & opex
- Cost Modelling
 - IRR, NPV, etc.
- Viable?
 - no
 - yes
- Bankable Study

Sales prices

Commercial-in-Confidence, © Innoval Technology Ltd
Summary

- Challenges Facing Aluminium Rolling Companies

- Importance of Experts and use of Process Models
 - Many key processes are conducted “out of sight”
 - Models are powerful tools to help in the optimisation of rolling processes so that maximum productivity is achieved without prejudicing product quality
 - Innoval staff have many years experience of both creating and applying these models to the benefit of the rolling and finishing processes

- Developing and Training Staff
 - Aluminium rolling technology course

- Designing new rolling operations for maximum returns
 - Iterative design process to maximise ROI
 - Need technical expertise and know-how to achieve world-class quality levels

Leads to improved rolling plant performance
Obrigado!
Innoval Technology

providing independent expertise to the aluminium industry

www.innovaltec.com